
© 2023 Densify. All rights reserved.

Whitepaper

Capacity
Operations
Continuous Compute
Optimization
for Cloud & Container
Environments

Andrew Hillier
Co-Founder & CTO, Densify

CAPOPS:
CAPACITY
OPERATIONS
WHITEPAPER

© 2023 Densify. All rights reserved.1

What is Capacity Operations?
Capacity Operations, or “CapOps,” is the emerging discipline of continuously optimizing
compute resources in cloud and container environments. It fills a gap that has emerged
between the DevOps and FinOps processes, where in-depth analysis of the ongoing resource
requirements of cloud and container-based applications typically isn’t performed by either
group, leading to inflated bills and unnecessary operational risk. And although it is driven
by the same general goals, CapOps differs from traditional capacity management in that the
focus is less on long term planning to make sure there is enough “on the floor,” and more
on continuous alignment of application demands and infrastructure supply in elastic, “as-a-
service” environments.

Background
Since the dawn of computing, there has been a need to ensure that IT environments have
sufficient resources to meet application demand, without having too much. As the industry
progressed from mainframes, to midrange, to open systems, to virtual environments, the
practice of managing capacity evolved with it, ultimately resulting in a highly-mature discipline
designed to minimize the risk of running out of resources, while at the same time ensuring
that over-purchasing is avoided. Specialized activities such as demand management, risk
management, predictive forecasting and others all helped contribute to the smooth and
efficient operation of IT environments.

The advent of cloud computing created a disruption in many areas of IT, and the management
of capacity was no exception. The ability to purchase resources “on demand” eliminated
the need for long-term planning of hardware purchases, and also greatly reduced the
risk of running out of resources. This caused the pendulum to swing away from capacity
management and toward the bill, causing many capacity teams to be disintermediated in
the process. The newfound ability to see
costs broken down in extreme detail gave
rise to a new focus, and a new breed of
tooling, designed to understand, allocate, and
minimize costs.

But, focusing on allocating costs and
purchasing discounts to minimize the bill
will only get you so far, and in many cases a
high cloud bill is just a symptom of a deeper
underlying resource problem. If applications
are configured to use the wrong resources,
and if the elastic structures in the cloud are
not working efficiently, then no amount of
discounting will claw back the extra cost.
To truly optimize the efficiency of these
environments, while at the same time
ensuring performance requirements are met,
the pendulum needs to swing back, and a
more disciplined approach to optimizing the
resources in use needs to be taken.

Capacity
Management

Capacity
Operations

Resource
Optimization Gap

(focus on bill)

Optimization complexity

Managed entities

Virtual Cloud Containers
• VM placement
• Resource allocation
• Demand management

• Instance catalog selection
• Optimizing elasticity
• Micro-purchasing

• Highly-granular resource requests
• Pods, ReplicaSets, deployments
• Node optimization

The shift to public cloud has created a blind spot for organizations
where the actual resources being consumed are not being optimized—

inflating bills and creating operational risk

2© 2023 Densify. All rights reserved.

CAPOPS:
CAPACITY

OPERATIONS
WHITEPAPER

Enter Capacity Operations
The logical path for this to take mirrors what has happened in the areas of development
and financial management. Application development has become far more agile, and has
effectively merged with certain aspects of operations to become DevOps. This mashup of an
offline activity (development) and an online practice (operations) helped evolve application
delivery into a much more agile, elastic and collaborative process. The same shift is also
happening to financial optimization, where the offline practice of financial management is
becoming more operational, producing a
much more dynamic FinOps practice that is
capable of keeping up with dynamic cloud
and container environments.

But both of these disciplines have practical
limitations. DevOps has the mandate to
“deliver applications and services at high
velocity,” but typically doesn’t include detailed
analysis and optimization of the resources
used by those applications, either when they
are initially deployed, or after they have been
running. These teams are too busy focusing
on new features and time-to-market, as they
should be, since they are uniquely able to
control this.

Similarly, FinOps has the mandate of “cloud
financial operations,” and is the formalization
of the various financial practices surrounding
cloud. And although optimizing resources has
a significant impact on the financial picture, FinOps teams typically do not have the tooling,
subject matter expertise, or bandwidth to delve deeply into detailed resource utilization,
optimizing elasticity, sizing containers, or other highly-granular activities.

Following this pattern, the logical evolution of capacity is for it to transition from an offline
practice (planning, management) to an online, more operational discipline. The resulting
“CapOps” practice can be considered to have the mandate of “continuous resource
optimization,” and by refocusing on the new, more dynamic capabilities of cloud and
container infrastructure, it can bring back the discipline that was temporarily lost. This allows
organizations to once again ensure that there are “sufficient resources to meet application
demand, without having too much,” filling the gap left by the evolution of the DevOps and
FinOps practices.

Key Capabilities of Capacity Operations
To understand the requirements of CapOps it is useful to draw parallels to the on-prem
data center hosting model, and in particular, what it means to have infrastructure “on the
floor” (and how that infrastructure gets on the floor). In an on-prem, CapEx-oriented hosting
model there is a long lead time for deploying new compute resources, and this drives a lot
of the capacity analysis that is performed, including forecasting and demand management.

CapOps
(capacity operations)

Resource
Optimization Gap

FinOps
(cloud financial operations)

DevOps
(high-velocity app &

service delivery)

Chargeback

Reservations & Savings Plans

CI/CD pipeline integration

Action execution
(approvals, Terraform/CloudFormation)

Resource & family optimization

Container optimization

Cost anomaly detection

Bill visibility

CAPOPS:
CAPACITY
OPERATIONS
WHITEPAPER

© 2023 Densify. All rights reserved.3

Accurately modeling the pipeline of inbound demand, and ensuring resources are available
to meet demand, can prevent unnecessary risk, and making sure those resources are used
efficiently can prevent costly purchases.

Cloud infrastructure, on the other hand, enables you to deploy resources “on the floor”
in minutes, or even seconds, through API calls or lines of code (such as Terraform or
CloudFormation). This highly-elastic “micro-purchasing” model is a key advantage of the cloud,
and eliminates the need for many of the planning-oriented capacity management activities.

But, this doesn’t mean capacity can be ignored, as many organizations initially assumed,
but rather it needs a completely different set of activities in order to optimize resources. In
many cases these activities must be re-thought from the ground up, since the fundamental
assumptions of traditional processes have changed. For example, even taking inventory of
what is “on the floor” is very different than in on-prem environments, and now resembles
more of a “stock chart” of ups and downs than a static number of things that can be counted.
This fluidity has a ripple effect through many other areas, including capacity.

And this micro-purchasing model is a double-edged sword. While providing agility, it also puts
resourcing decisions in the hands of engineers and developers who may not have sufficient
information to make the right choice. In this new world, a relatively junior engineer can put
a line of code in a file that causes a purchase, and although this purchase is small, getting it
wrong across many instances can result in tremendous inefficiency and significant cost. As a
result, even traditional capacity management activities such as rightsizing virtual machines
now need to be done in a completely different way, and must adapt to this new form of
decentralization of decision-making.

Given all of this, there are a set of fundamental operations that must be performed in order to
make sure that the right resources are deployed at any point in time. For cloud environments,
this includes:

 • Instance sizing (upsize, downsize) and termination

 • Instance family optimization (memory optimized, CPU optimized, burstable)

 • Scaling group node optimization (node type, size)

 • Scaling group scaling parameter optimization (elasticity)

 • DB-as-a-service optimization

AWS
CloudFormation

Automation APIs &
Infrastructure as Codeprovider "aws" {

 region = "${var.aws_region}"
}
resource "aws_instance" "web" {
 name = "Web Server"
 instance_type = "m4.large"
 ami = "${lookup(var.aws_amis, var.aws_region)}"
}

Micro-purchasing

4© 2023 Densify. All rights reserved.

CAPOPS:
CAPACITY

OPERATIONS
WHITEPAPER

Only one of these operations, instance sizing, resembles something that is done in traditional
virtual environments, but even this must be done very differently. As mentioned above, the
resources in use are now typically specified in manifests, or “infrastructure as code,” and any
optimization must be embedded in these manifests, with automation occurring through the
deployment pipeline. This is very different from virtual environments, where automation
typically involves modifying the VMs directly—this approach will not work in environments
that leverage infrastructure as code, as the running instances will always revert back to what
the code says.

Instead, the optimization recommendations must also become lines of code to enable
continuous optimization, effectively creating “optimization as code.”

Beyond the instance sizing, the rest of the operations are new. Clouds use catalog-based
sizing, and optimization analysis must not only determine the correct instance size, but also
the optimal instance family for a given workload, which can be complex to determine. Even
within a given family, there may be newer instance types available that are faster, cheaper, or
both, and modernizing to these new instance types can be a quick way to gain efficiency.

Building on this, the optimization of scaling
groups also benefits from instance-level
optimization, as it is common for there to
be a mismatch between the resources being
consumed by the applications and those
being provisioned in the scaling groups. And
scaling groups also enable the optimization
of the scaling parameters in order to ensure
that they are scaling up when needed, and
down when not. Optimizing these settings
enables organization to configure the cloud
infrastructure to dynamically respond to
load in an optimal manner, something that
is not possible in legacy environments. This
scaling group optimization is becoming
increasingly important as organizations move
to containers—container clusters typically
run on auto scaling groups, and not only
is container performance highly-dependent on them scaling properly, but the costs of the
container environment are also reflected in the scaling group costs.

AWS
CloudFormation

Automation APIs &
Infrastructure as Codeprovider "aws" {

 region = "${var.aws_region}"
}
resource "aws_instance" "web" {
 name = "Web Server"
 #instance_type = "m4.large"
 instance_type = "${aws_instance.tags:Densify-optimal-instance-type}"
 ami = "${lookup(var.aws_amis, var.aws_region)}"
}

“Optimization as code”

CAPOPS:
CAPACITY
OPERATIONS
WHITEPAPER

© 2023 Densify. All rights reserved.5

CapOps for Containers
If dealing with the granularity of purchasing in cloud environments creates a resource
challenge, then the operational model of containers takes this to an entirely new level.
Containers can be even more dynamic, and far more granular, often creating an order of
magnitude more entities that must be optimized. In many ways it is like transitioning from the
VM-level management to process-level management, and each individual workload, such as
a web server or queue manager, must be assigned specific resources. To make things even
more complicated, these containers can be combined into pods, replica sets, deployments
and other structures, which can be launched from a single manifest, and all of these
structures can be governed by various quotas to control resource usage.

And as with the cloud, these characteristics are both a blessing and a curse. Containers
have undeniable benefits when it comes to the flexibility and agility they provide when
deploying new applications and services. But many people mistakenly believe that they will
magically optimize themselves when it comes to resources. This is not the case, and providing
inaccurate resource specifications can actually lead to tremendous inefficiency, with resources
being stranded and node utilization very low.

Part of this misconception is the fact that containers don’t overcommit resources in the
same way virtual environments do, meaning that cluster administrators cannot simply tune
overcommit ratios to get higher density. The resources assigned to containers are not virtual
resources at all, they are actual resources, meaning they cannot be given out to multiple
consumers at the same time.

6© 2023 Densify. All rights reserved.

CAPOPS:
CAPACITY

OPERATIONS
WHITEPAPER

This removes a key weapon in the battle against inefficiency, and any over-specification of
resources translates directly into the need for more infrastructure, either on prem or in the
cloud, directly impacting cost.

There are also a number of other misconceptions when it comes to containers. If containers
are very small then many assume that poor resource specifications couldn’t possibly cause
high costs, since each container is so insignificant. But if thousands of poorly configured
containers are running then this can add up to a tremendous amount, and this is often
observed to be the case when analyzing container environments. Similarly, if containers or
microservices run for a very short length of time then it is also often assumed that this is
relatively harmless. But again, if the services run thousands of times than the error adds up.
This “fallacy of insignificance,” combined with the impractical amount of effort it would take to
manually optimize each container, causes many container environments to be very inefficient.

To combat this, the more operationalized form of capacity optimization provided by CapOps
also help address the gap in container resource optimization. This includes:

 • CPU request optimization: This is amount of CPU resources (in “millicores”)
guaranteed to a container. The container scheduler must ensure that there are
sufficient resources to meet the request values of all containers on a node, so if
this value is too high (which is common) then the scheduler will need to spread the
containers across more nodes than is necessary, and utilization will be low.

 • CPU limit optimization: This is the maximum amount a container can consume and
setting it too low will cause the scheduler to throttle the performance of a container

 • Memory request optimization: This is the amount of memory (in megabytes) allocated
to a container. Like CPU, if this value is too high then resources will be stranded, and
workload density will be low. But, unlike CPU, if this value is too low, then the scheduler
may end up placing too many containers on a node, and when the aggregate memory
utilization of that node goes above the requested values, the scheduler will actually kill
containers to free up resources. This “Out of Memory Killer” (or “OOM killer”) is very
dangerous, and can be avoided with proper resource optimization.

 • Memory limit optimization: This is the maximum amount of memory a container can
consume, and if it is too low, then this can also cause containers to be killed when their
utilization exceeds their limit.

CAPOPS:
CAPACITY
OPERATIONS
WHITEPAPER

© 2023 Densify. All rights reserved.7

By performing this analysis at the container-level, the results can be then associated back to
the Pods, ReplicaSets, and Deployments that they are part of, enabling the optimization to be
embedded in the manifests that created the containers. This provides seamless automation,
and prevents humans from having to manually deal with optimizing thousands of containers,
which simply isn’t viable as container environments grow.

Of course, these containers run on nodes, and the optimization of those nodes is also critical.
For containers running in cloud environments the nodes are usually cloud instances, typically
running in scaling groups, and optimization
equates to the cloud instance optimization
described above. And because the container
and node configurations affect each other,
the two forms of optimization must be
done together to ensure that the nodes are
constantly aligned with the needs of the
containers. For example, if container CPU
request values are reduced, then memory
will typically become the primary constraint
in a cluster, and it might be necessary to
transition to memory optimized nodes
to maintain efficiency. For on-premises
environments, the nodes can be VMs
(optimized via sizing and placement) or
bare metal, requiring long-term purchase
planning consistent with an on prem capacity
management practice.

Taking Action
Although simply knowing that optimization is required, and quantifying the costs or risks
that exist, can be a useful end in itself, the true goal is typically to take action to actually
improve the running environment. But this can be challenging, and even organizations that
recognize the need for this type of optimization can fail to make a difference if they don’t
take the right approach to actioning the recommendations. Application owners and lines
of business are understandably concerned with the stability of their applications, and will
not allow changes to their environments without an air-tight justification and a significant
amount of supporting detail.

In order to ensure that the actions generated by a CapOps system met this high bar, and can
actually be taken, there are a number of key requirements that must be met:

1. Precision: Any recommendation that is generated must be accurate, and account for
the minute details that impact the applications. For example, if an app requires local
storage, then any recommendation to move to an instance type that doesn’t have
local storage is useless. If an app is 32-bit, then any recommendation to move from an
M3 to an M5 is a non-starter. And, more commonly, if app components have specific
resource requirements dictated by the vendor, such as SAP module that must be
configured with a specific amount of memory, then any recommendations to downsize
these instances are counterproductive. A CapOps system must have detailed policies

8© 2023 Densify. All rights reserved.

CAPOPS:
CAPACITY

OPERATIONS
WHITEPAPER

to account for this level of detail, and must also use benchmarks to model the impact
of changing instance types, in order to provide sufficient precision to enable action.
Without this, an organization will not succeed in promoting change, and trying to
action flawed recommendation will have the perverse effect of creating more work for
subject matter experts as they need to review and vet each recommendation. The last
thing you want is a database full of recommendations you can’t take.

2. Integration: The recommendations that are generated by a CapOps system need
to go somewhere, and in environments with highly distributed stakeholders, they
would ideally go to systems that those users already use, rather than making these
users log into something new. This includes reporting and business intelligence (BI)
systems, change management systems, and even DevOps tooling and pipelines,
where automation can occur. To support this, recommendations need to exist in
both machine-readable and human-readable form, enabling socialization as well
as automation. For example, it is very important to have impact analysis reports
that provide details of a recommended change (including the predicted utilization
impact). These can be attached to change tickets, or distributed through messaging
systems, and have a tremendous impact on the willingness to approve those
changes. Similarly, business group rankings and “shameback” reports are also useful
in promoting action, by providing transparency across the business.

3. Automation: Although success can be had without going to full automation, it is
typically the long-term goal for many organizations, particularly as they achieve scale
and move to containers. As the number of “moving parts” that must be optimized
increases, manual action becomes less and less viable, and the risk of human
error becomes higher and higher. But any automation strategy must also adhere
to change management requirements, and the ideal solution is one that provides
transparency (e.g. app owner reports), change control (e.g. ITSM integration), and
full automation of the change when approval is attained. With sufficient trust in the
analytics (consistent with the “precision” requirement) some organizations have
negotiated with app teams to remove the approval requirement, which greatly
streamlines the automation process.

In addition to these three requirements, a CapOps system must also be open, allowing access
to the data and recommendations in order to feed other tools in the ecosystem. Because
collecting data in cloud and container environments can be a challenge, a CapOps system that
contains all of this data can be valuable on this basis alone. But combining this raw data with
optimization analysis results and associated metadata is even more powerful, and a “Resource
Management DB” (or “CapOpsDB”) that contains all of this data could well become a key
component in future tooling architectures.

The rise of tools like Grafana is evidence of the need for this kind of component, and
expanding the data available to these tools to include detailed optimization results and
predictive analysis models would be a logical progression for most organizations. It is also
consistent with the move toward observability, and by combining the CapOps data with logs,
tracing, performance analysis and other “data lakes” the combination can become greater
than the sum of its parts. Regardless of whether an organization takes a “centrally-managed”
versus a “centrally-coordinated” approach to capacity, it always makes sense to start with a
“centrally-analyzed” set of answers.

CAPOPS:
CAPACITY
OPERATIONS
WHITEPAPER

© 2023 Densify. All rights reserved.9

Conclusion
Using history as our guide, and following the evolution of DevOps and FinOps, it is logical that
CapOps, or something like it, will emerge to pick up the capacity torch that was temporarily
dropped in the move to cloud. Reading the bill, and purchasing commitment-based discounts,
will only take an organization so far, and the next step is to optimize the actual resources
that are purchased. And focusing on the elasticity inherent in the cloud and container
environments, and making sure the cloud-native constructs are working like a well-oiled
machine, will make an organization much more responsive to changing business needs, less
apt to experience operational issues, and far less likely to experience high cloud bills that are
not reflective of their true needs.

